

Agilent HLMP-LD15, HLMP-LM15, HLMP-LB15 4mm Precision Optical Performance Red, Green and Blue Standard Oval LEDs

Data Sheet

Description

These Precision Optical Performance Oval LEDs are specifically designed for full color/video and passenger information signs. The oval shaped radiation pattern and high luminous intensity ensure that these devices are excellent for wide field of view outdoor applications where a wide viewing angle and readability in sunlight are essential. These lamps have very smooth, matched radiation patterns ensuring consistent color mixing in full color applications, message

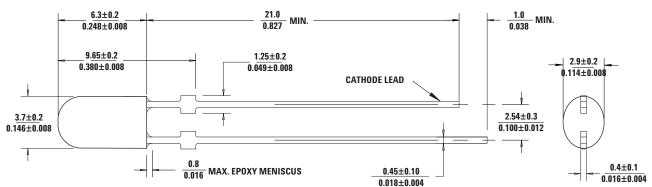
uniformity across the viewing angle of the sign. High efficiency LED material is used in these lamps: Aluminum Indium Gallium Phosphide (AlInGaP II) for red and Indium Gallium Nitride for blue and green. Each lamp is made with an advanced optical grade epoxy offering superior high temperature and high moisture resistance in outdoor applications. The package epoxy contains both UV-a and UV-b inhibitors to reduce the effects of long-term exposure to direct sunlight.

Features

- Well defined spatial radiation pattern
- High brightness material

Blue InGaN 470nm

- Available in red, green and blue color.
 Red AlInGaP 630mm
 Green InGaN 525nm
- Superior resistance to moisture


Benefits

- Viewing angle designed for wide filed of view applications
- Superior performance for outdoor environments

Applications

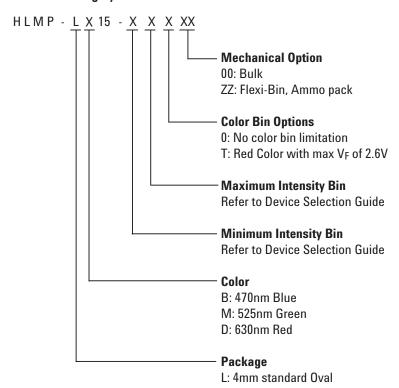
- Full color signs
- Commercial outdoor advertising.

Package Dimension

Notes:

1. Dimension in millimeters (inches).

Caution: InGaN devices are Class I ESD sensitive. Please observe appropriate precautions during handling and processing. Refer to Application Note AN-1142 for additional details.


Device Selection Guide

	Color and Dominant Wavelength λd (nm)	Luminous at 20 mA	Intensity Iv (mo	ed)
Part Number	Тур.	Min.	Max	Tinting Type
HLMP-LD15-NRTxx	Red 630	680	1900	Red
HLMP-LM15-QT0xx	Green 525	1150	3200	Green
HLMP-LB15-KN0xx	Blue 470	310	880	Blue

Notes

- 1. The luminous intensity is measured on the mechanical axis of the lamp package
- 2. The tolerance for intensity limit is $\pm 15\%$
- 3. The optical axis is closely aligned with the package mechanical axis
- $4. \quad \text{The dominant wavelength, λ_d, is derived from the Chromaticity Diagram and represents the color of the lamp.}\\$

Part Numbering System

Absolute Maximum Rating $T_A = 25$ °C

Parameter	Red	Blue and Green	Unit	
DC Forward Current [1]	50	30	mA	
Peak Forward Current	100[2]	100 ^[3]	mA	
Power Dissipation	120	130	mW	
Reverse Voltage	5 (I _R = 100 μA)	5 (I _R = 10 μA)	V	
LED Junction Temperature	130	130	°C	
Operating Temperature Range	-40 to +100	-40 to +80	°C	
Storage Temperature Range	-40 to +120	-40 to +100	۰C	

Notes

- 1. Derate linearly as shown in Figure 4 and Figure 8.
- 2. Duty Factor 30%, frequency 1Khz.
- 3. Duty Factor 10%, frequency 1kHz.

Electrical/Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Condition
Forward Voltage Red ($\lambda_d = 630$ nm) ^[1] Blue ($\lambda_d = 470$ nm) Green ($\lambda_d = 525$ nm)	V _F		2.3 3.8 3.8	2.6 4.0 4.0	V	I _F = 20 mA
Reverse Voltage Red ($\lambda_d = 630$ nm) Blue ($\lambda_d = 470$ nm) Green ($\lambda_d = 525$ nm)	V_R	5			V	$I_R = 100 \mu A$ $I_R = 10 \mu A$ $I_R = 10 \mu A$
Peak Wavelength Red ($\lambda_d = 630$ nm) Blue ($\lambda_d = 470$ nm) Green ($\lambda_d = 525$ nm)	λ_{peak}		639 467 520		nm	Peak of wavelength of spectral distribution at $I_F = 20 \text{ mA}$
Spectral Half width Red (λ_d = 630nm) Blue (λ_d = 470nm) Green (λ_d = 525nm)	$\Delta\lambda_{1/2}$		17 24 35		nm	Wavelength width at spectral distribution power point at $I_F = 20 \text{ mA}$
Capacitance Red (λ_d = 630nm) Blue (λ_d = 470nm) Green (λ_d = 525nm)	С		40 43 43		pF	$V_F = 0$, $F = 1$ MHz
Thermal Resistance	$R\theta_{\text{J-PIN}}$		240		°C/W	LED Junction to cathode lead
Luminous Efficacy [2] Red ($\lambda_d = 630$ nm) Blue ($\lambda_d = 470$ nm) Green ($\lambda_d = 525$ nm)	ην		155 75 520		lm/W	Emitted luminous power/emitted radiant power

Notes:

- 1. Refer to VF bin table.
- 2. The radiant intensity, I_e in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$ where I_V is the luminous intensity in candelas and η_V is the luminous efficacy in lumens/watt.

AllnGaP Red 630nm

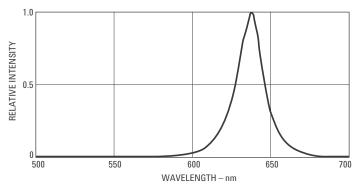


Figure 1. Relative intensity vs. wavelength

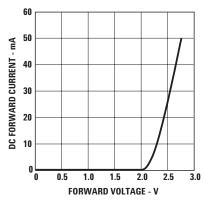


Figure 2. Forward current vs. forward voltage

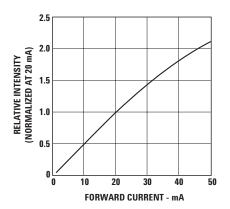


Figure 3. Relative luminous intensity vs. forward current

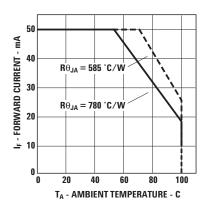


Figure 4. Forward current vs. ambient temperature

InGaN Blue and Green

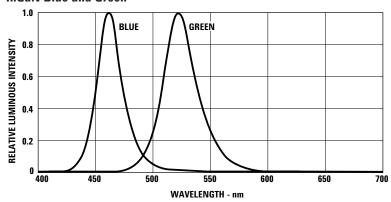


Figure 5. Relative intensity vs. wavelength

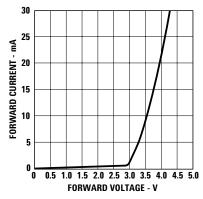


Figure 6. Forward current vs. forward voltage.

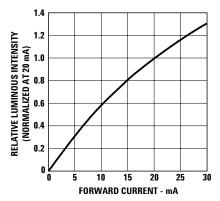


Figure 7. Relative luminous intensity vs. forward current.

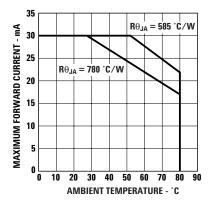


Figure 8. Forward current vs. ambient temperature.

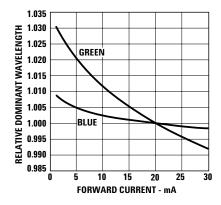


Figure 9. Relative dominant wavelength vs. forward current

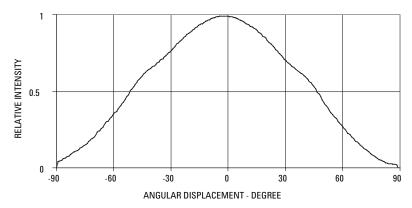


Figure 10a. Spatial radiation pattern – major axis for RBG

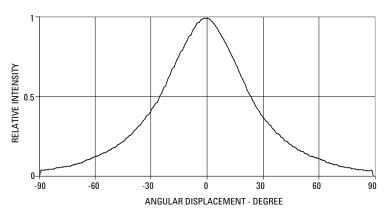


Figure 10b. Spatial radiation pattern — minor axis for RGB $\,$

Intensity Bin Limit Table

	Intensity (mcd) at 20 mA		
Bin	Min	Max	
K	310	400	
L	400	520	
М	520	680	
N	680	880	
Р	880	1150	
Q	1150	1500	
R	1500	1900	
S	1900	2500	
T	2500	3200	
U	3200	4200	

Tolerance for each bin limit is ± 15%

VF bin Table [2] (V at 20mA)

Bin ID	Min.	Max.
VA	2.0	2.2
VB	2.2	2.4
VC	2.4	2.6

Tolerance for each bin limit is ±0.05V.

Blue Color Bin Table

Bin	Min Dom	Max Dom	Xmin	Ymin	Xmax	Ymax
1	460.0	464.0	0.1440	0.0297	0.1766	0.0966
			0.1818	0.0904	0.1374	0.0374
2	464.0	468.0	0.1374	0.0374	0.1699	0.1062
			0.1766	0.0966	0.1291	0.0495
3	468.0	472.0	0.1291	0.0495	0.1616	0.1209
			0.1699	0.1062	0.1187	0.0671
4	472.0	476.0	0.1187	0.0671	0.1517	0.1423
			0.1616	0.1209	0.1063	0.0945
5	476.0	480.0	0.1063	0.0945	0.1397	0.1728
			0.1517	0.1423	0.0913	0.1327

Tolerance for each bin limit is ±0.5nm

Green Color Bin Table

Bin	Min Dom	Max Dom	Xmin	Ymin	Xmax	Ymax
1	520.0	524.0	0.0743	0.8338	0.1856	0.6556
			0.1650	0.6586	0.1060	0.8292
2	524.0	528.0	0.1060	0.8292	0.2068	0.6463
			0.1856	0.6556	0.1387	0.8148
3	528.0	532.0	0.1387	0.8148	0.2273	0.6344
			0.2068	0.6463	0.1702	0.7965
4	532.0	536.0	0.1702	0.7965	0.2469	0.6213
			0.2273	0.6344	0.2003	0.7764
5	536.0	540.0	0.2003	0.7764	0.2659	0.6070
			0.2469	0.6213	0.2296	0.7543

Tolerance for each bin limit is ±0.5 nm

Red Color Range

Bin	Min Dom	Max Dom	Xmin	Ymin	Xmax	Ymax
	622	634	0.6904	0.3094	0.6945	0.2888
			0.6726	0.3106	0.7135	0.2865

Tolerance for each bin limit is $\pm 0.5 \text{ nm}$

Note:

- 1. All bin categories are established for classification of products. Products may not be available in all bin categories. Please contact your Agilent representative for further information.
- 2. VF bin table only available for those AllnGaP Red devices with options -xxTxx.

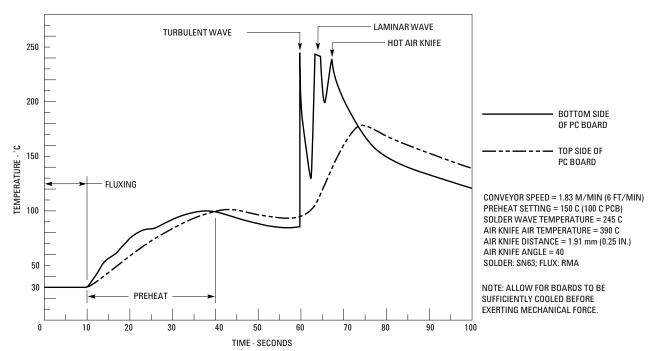
Precautions:

Lead Forming:

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board.
- If lead forming is required before soldering, care must be taken to avoid any excessive mechanical stress induced to LED package. Otherwise, cut the leads of LED to length after soldering process at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- It is recommended that tooling made to precisely form and cut the leads to length rather than rely upon hand operation.

Soldering Condition:

- Care must be taken during PCB assembly and soldering process to prevent damage to LED component.
- The closest LED is allowed to solder on board is 1.59mm below the body (encapsulant epoxy) for those parts without standoff.
- Recommended soldering condition:


	Wave Soldering	Manual Solder Dipping
Pre-heat temperature	105 °C Max.	_
Preheat time	30 sec Max	_
Peak temperature	250 °C Max.	260 °C Max.
Dwell time	3 sec Max.	5 sec Max

- Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave. Customer is advised to periodically check on the soldering profile to ensure the soldering profile used is always conforming to recommended soldering condition.
- If necessary, use fixture to hold the LED component in proper orientation with respect to the PCB during soldering process.
- Proper handling is imperative to avoid excessive thermal stresses to LED components when heated. Therefore, the soldered PCB must be allowed to cool to room temperature, 25°C before handling.
- Special attention must be given to board fabrication, solder masking, surface plating and lead holes size and component orientation to assure solderability.
- Recommended PC board plated through holes size for LED component leads.

LED component ead size	Diagonal	Plated through hole diameter
0.457 x 0.457mm	0.646 mm	0.976 to 1.078 mm
(0.018 x 0.018inch)	(0.025 inch)	(0.038 to 0.042 inch)
0.508 x 0.508mm	0.718 mm	1.049 to 1.150mm
(0.020 x 0.020inch)	(0.028 inch)	(0.041 to 0.045 inch)

Note: Refer to application note AN1027 for more information on soldering LED components.

Recommended Wave Soldering Profile

www.agilent.com/ semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394

India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044

Taiwan: (+65) 6755 1843

Data subject to change.
Copyright © 2005 Agilent Technologies, Inc.
October 27, 2005

Obsoletes 5989-1697EN
5989-4142EN

